Mosquitoes pose a significant problem worldwide because of the diseases they transmit. Due to its antimicrobial and disinfectant properties, Commiphora myrrha (C. myrrha) has long been a popular choice in traditional medicine. This study aimed to extract C. myrrha using three different solvents—methanol, acetone, and chloroform—to identify their biochemical components and assess their larvicidal activity. The extracts were analyzed using gas chromatography–mass spectrometry, and their effects were evaluated against Aedes aegypti. We identified 29, 41, and 19 phytoconstituents in the acetone, methanol, and chloroform extracts, respectively, with most belonging to the sesquiterpene and phenol categories. Larval mortality rates were recorded as follows: chloroform (100%), methanol (90%), and acetone (95%) extracts of C. myrrha at a concentration of 1000 ppm, 24 h post-treatment. After 72 h, the C. myrrha extracts showed effectiveness with LC50 values of 118.33, 127.67, and 142.13 ppm for chloroform, acetone, and methanol, respectively. The chloroform extract was the most effective in reducing the average number of eggs laid per day (234 eggs) compared to the untreated control group (1513 eggs) at 1000 ppm. These findings provide scientific evidence of the larvicidal efficacy of C. myrrha extracts and serve as valuable resources for developing plant-based pharmaceuticals.
Loading....